

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

649357433

CO-ORDINATED SCIENCES

0654/43

Paper 4 Theory (Extended)

May/June 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of parts of a tooth.

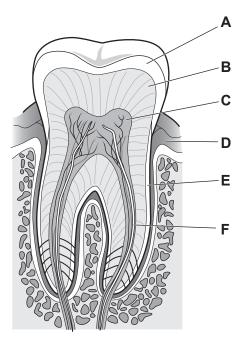


Fig. 1.1

(i)	State the letters from Fig. 1.1 that identify two parts that are dissolved by acid dental decay.	uring
	and	[2]
(ii)	State the letter from Fig. 1.1 that identifies part of the nervous system.	
		[1]
(iii)	State the type of organism that causes dental decay.	
		[1]
(iv)	State the names of two different types of human teeth.	
	1	
	2	1

(b) Table 1.1 shows some information about deficiency of some of the components in the diet.Complete Table 1.1.

Table 1.1

component	effect of deficiency in the diet
protein	causes the disease
	causes the disease scurvy
fibre	causes
	develop weak bones or rickets

		[4
(c)	One risk factor for coronary heart disease is an unhealthy diet.	
	State two other risk factors for coronary heart disease.	
	1	
	2	
		[2

[Total: 12]

2 A student investigates the reaction between calcium carbonate, $CaCO_3$, and dilute hydrochloric acid, HC1.

Calcium chloride, $CaCl_2$, water and carbon dioxide are made.

(a)	Construct the	balanced	symbol	equation	for this	reaction
-----	---------------	----------	--------	----------	----------	----------

[2]

(b) Describe the test for carbon dioxide. Include the observation for a positive result.

test

result[2]

(c) Fig. 2.1 shows the apparatus used.

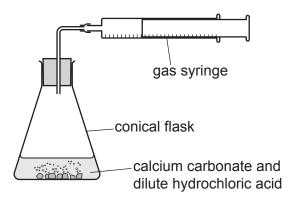


Fig. 2.1

The student does the experiment at five different temperatures.

Table 2.1 shows the results of the experiment.

Table 2.1

temperature/°C	21	32	40	48	59
time to collect 50 cm ³ of gas/s	131	66	42	24	13

	(i)	State	the	temperature	when	the	reaction	is	fastes	st
--	-----	-------	-----	-------------	------	-----	----------	----	--------	----

tomporature -	\sim	Г4	1
temperature =	\cup	11	1

(ii) Describe the relationship between the temperature and the **rate** of the reaction.

.....

(d) The student does the experiment again at 21 °C.

They use the same amounts of calcium carbonate and dilute hydrochloric acid.

This time they use hydrochloric acid that is **more concentrated**.

The reaction is faster than when using dilute hydrochloric acid.

Explain why.

Use ideas about collisions between particles in your answer.

(e) Fig. 2.2 shows the energy level diagrams for two different reactions, A and B.

Reaction **A** and reaction **B** are done under the same conditions.

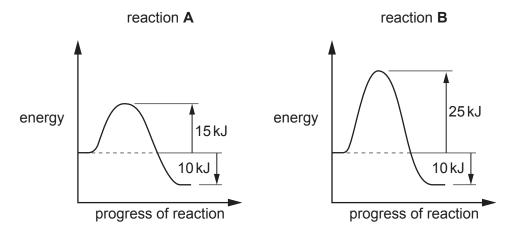


Fig. 2.2

Reaction A happens faster than reaction B.

Explain why.

Use	ini e	forma	tion	from	Fig.	2.2	in	your	answer.
-----	-------	-------	------	------	------	-----	----	------	---------

[0]

[Total: 10]

3 Fig. 3.1 shows an iceberg floating in the sea.

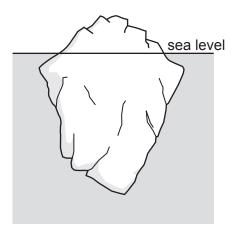


Fig. 3.1

(a) The density of the iceberg is $920 \, \text{kg/m}^3$ and the volume of the iceberg is $2 \times 10^5 \, \text{m}^3$.

Calculate the mass of the iceberg.

mass =kg [2]

(b) (i) Some samples of ice are taken from the iceberg so that a scientist can study what happens when the samples melt.

The scientist records the masses of three pieces of ice.

The pieces of ice are placed on top of blocks made of different materials.

The blocks are the same shape and size and are placed in a warm room so that they are all at the same temperature.

Fig. 3.2 shows the materials used.

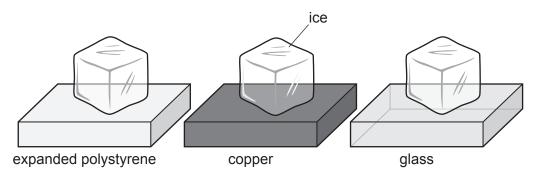


Fig. 3.2

After 5 minutes, the mass of each piece of solid ice remaining is measured.

Table 3.1 shows the scientist's results.

Table 3.1

material used	initial mass/g	mass after 5 minutes/g	
expanded polystyrene	8.18	6.14	
copper	8.20	4.08	
glass	8.17	4.82	

	Use Fig. 3.2 and Table 3.1 to describe and explain the results of the scientist's investigation.
	description
	explanation
	[3]
(ii)	Liquid water can be boiled to produce steam.
	Describe the process of boiling in terms of the:
	 forces between molecules distances between molecules motion of molecules.
	forces between molecules
	distances between molecules
	motion of molecules
	[3]

[Total: 8]

4 (a) Fig. 4.1 is a graph showing the effect of temperature on the rate of transpiration in one leaf.

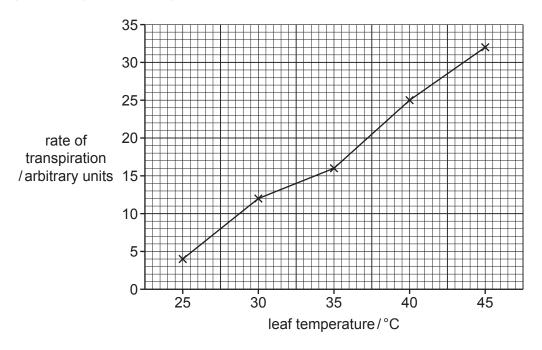


Fig. 4.1

(i) Complete the sentences to describe **and** explain the results shown in Fig. 4.1.

As the leaf temperature increases, the rate of transpiration increases.

Higher leaf temperatures result in increased of

water at the surfaces of the mesophyll cells.

This causes an increase in the rate water vapour

out of the leaf.

Water vapour is lost from the leaf through in the lower epidermis.

[3]

(ii) The investigation is repeated at a greater humidity.

Draw a line on Fig. 4.1 to show the effect of greater humidity on the results. [1]

(b)	Xyle	em vessels transport water to the leaves.	
	(i)	Explain the mechanism that causes the movement of water up the xylem.	
	(ii)	State one other function of xylem apart from transport.	
			[1]
(c)	Sta	te the names of two substances that are only transported in phloem.	
	2		[2]
			[Total: 10]

Lith	ium, sodium	and potassiun	n are metals in Group	o I of the Periodic Table.	
(a)	Describe th	ne trend in reac	tivity of the Group I e	elements down the group.	
					[1]
(b)	Table 5.1 s	hows some info	ormation about Group	o Lelements.	
(3)					donaite of multiplicate
	•			oint of potassium and the	density of rubidium.
	Use ideas	about trends do	own the group to help	you.	
			Table 5.1		
		element	melting point /°C	density g/cm ³	
		lithium	181	0.53	
		sodium	98	0.97	
		potassium		0.89	
		rubidium	39		
		caesium	28	1.93	
					[2]
(c)	State the c	olour of the flar	me when sodium buri	ns in oxygen.	
	Tick (✓) on	e box.			
			blue		
			lilac		
			red		
			yellow		
					[1]

(d)	Potassium reacts with water.
	Potassium hydroxide solution and hydrogen are made.
	Complete the balanced equation for the reaction.
	Include state symbols.
	$2K(s) + 2H_2O(I) \rightarrow \dots (\dots) + \dots (\dots)$ [3]
(e)	Chlorine and bromine are elements in Group VII of the Periodic Table.
	Chlorine displaces bromine from aqueous sodium bromide.
	Cl_2 + 2NaBr \longrightarrow Br ₂ + 2NaCl
	Explain why this is an example of a redox reaction.
	[2]
(f)	State which of the following is the electronic structure of an element in Group VIII (Group 0).
	Tick (✓) one box.
	2.2
	2.8.2
	2.8.4
	2.8.8
	[1]
	[Total: 10]

[Total: 10]

6 Fig. 6.1 shows wind turbines used to generate electricity.

Fig. 6.1

(a) Fig. 6.2 shows how the power output of one wind turbine changes with wind speed.

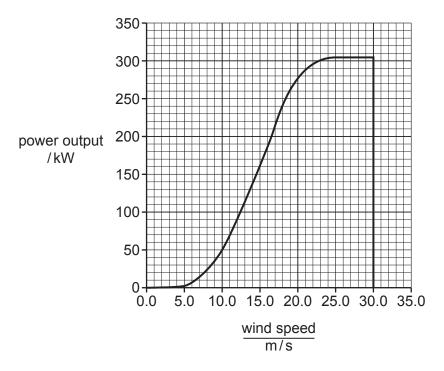


Fig. 6.2

On one particular day, the wind sp	peed is 10 m/s.
------------------------------------	-----------------

Calculate the energy generated by one wind turbine in 1 hour (3600 seconds).

oporavi -	1	[3]
energy =	J	IJ

(b) The wind turbine uses a generator to produce electricity.

Fig. 6.3 shows a simple a.c. generator.

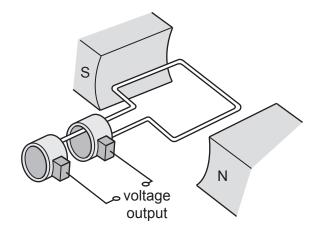


Fig. 6.3

(i)	Describe how a simple a.c. generator produces a voltage output.			
	[3]			

(ii) On Fig. 6.4, sketch a graph of voltage output against time for a simple a.c. generator rotating with a constant speed.

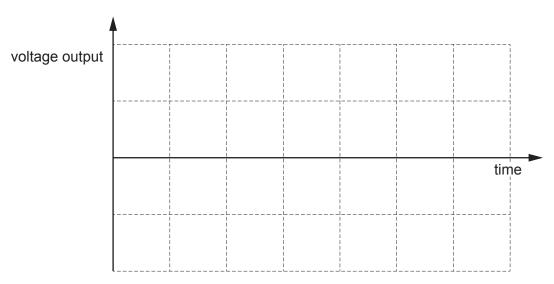
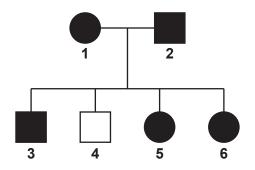


Fig. 6.4

[2]


(c)		pines and generators can also be used to convert the kinetic energy of tidal water into strical energy.
	(i)	The efficiency of a tidal generator is 80% when the tidal water moves at 5.0 m/s.
		Calculate the mass of water which would need to pass through the tidal generator to produce 1400 J of electrical energy from kinetic energy.
		mass =kg [3]
	(ii)	State one advantage of using tidal generators to produce electricity instead of traditional fossil fuel power stations.
		[1]
		[Total: 12]

7 (a) Albinism is an inherited condition that results in no pigments being made in the skin.

The allele for albinism is recessive a.

The allele for no albinism is dominant **A**.

Fig. 7.1 is a pedigree chart diagram of albinism in one family.

Key	
female without albinism	female with albinism
male without albinism	male with albinism

Fig. 7.1

(i) Use the information in Fig. 7.1 to state:

the genotype of person 4	
the genotype of person 1	
the sex chromosomes of person 5.	

(ii) A couple without albinism decides to have a child.

Complete the genetic diagram in Fig. 7.2 to calculate the percentage chance of having a child with albinism.

[3]

		parental gametes		
		Α	а	
manantal namatas	Α			
parental gametes	а			

Fig. 7.2

percentage chance of child having albinism =% [2]

(b)	Mitc	osis and meiosis are two forms of cell division.	
	(i)	State two roles of mitosis .	
		1	
		2	
			[2]
	(ii)	State the name of one organ in the human body where meiosis occurs.	
			[1]
	(iii)	An organism has 32 chromosomes.	
		State the number of chromosomes in a cell formed by meiosis in this organism.	
			[1]
		[Total	: 9]

8 (a) Petroleum is separated into different fractions.

Fig. 8.1 shows the percentage composition of fractions from a sample of petroleum.

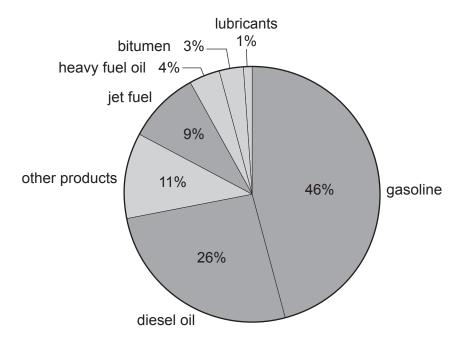


Fig. 8.1

(i)	State one use of bitumen.	
		[1]
(ii)	225 kg of the sample of petroleum is placed into a barrel.	
	Calculate the mass of diesel oil, in kilograms, in this barrel.	

	mass of diesel oil =kg [2]
(b)	Petroleum is separated into different fractions by fractional distillation.
	Describe how petroleum is separated by fractional distillation.

(c)	Diesel oil, gasoline and other fuels made from petroleum naturally contain some sulfur impurities.
	Suggest why sulfur impurities are removed from these fuels before the fuels are used.
	[1]
(d)	Gasoline used in cars causes air pollution by producing oxides of nitrogen such as nitrogen monoxide, NO.
	Describe how a catalytic converter removes nitrogen monoxide from exhaust emissions.
	Include a balanced symbol equation in your answer.
	[3]
	[Total: 10]

9 (a) Fig. 9.1 shows a butterfly resting on a leaf attached to the branch of a tree.

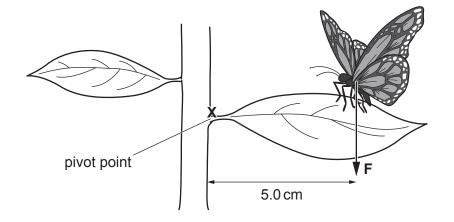


Fig. 9.1

(1)	State the name of the force labelled F.	
		[1

(ii) The leaf will break off the branch if the moment about the pivot point **X** is greater than 0.14 N cm.

The leaf does not break off the branch when the butterfly rests on it.

Calculate the maximum mass of the butterfly.

The gravitational field strength, g, is 10 N/kg.

maximum mass =kg [3]

(b) A scientist captures the butterfly in a plastic container to study it more closely.

The scientist places a converging lens across the top of the plastic container.

Fig. 9.2 shows the butterfly in the container.

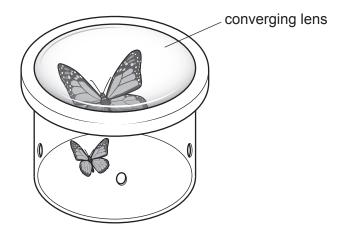


Fig. 9.2

Complete Fig. 9.3 to show how a thin converging lens forms a real image.

Label the image with the word *image*.

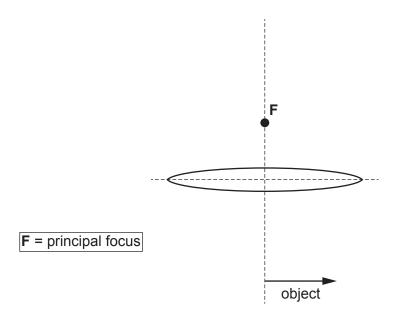


Fig. 9.3

[3]

- (c) The scientist uses a filament lamp to illuminate the butterfly while she is studying it.
 - (i) The filament lamp is in a series circuit with a cell and a switch.

Complete Fig. 9.4 to show this circuit.

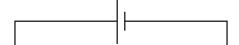


Fig. 9.4

[2]

(ii) Fig. 9.5 shows the current–voltage characteristic of a filament lamp.

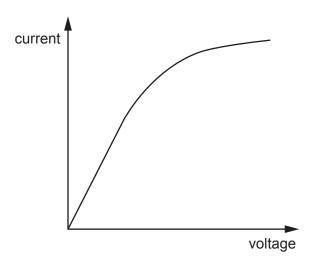


Fig. 9.5

Use Fig. 9.5 to	explain he	ow the re	sistance	of the	filament	lamp	changes	as the	voltage
across it is incre	eased.								

	[3]

[Total: 12]

10 (a) The pH of the fluid in muscles changes during vigorous exercise due to the changing concentrations of lactic acid.

Table 10.1 shows the difference in pH before and immediately after vigorous exercise.

Table 10.1

measurement taken	рН
before exercise	7.08
immediately after exercise	6.58

	(i)	Calculate the decrease	e in pH shown in Table 10.1.
			[1]
	(ii)	Explain why there was	a decrease in pH of the muscles during vigorous exercise.
			[3]
(b)	Mus	scle cells are adapted fo	or movement as they are able to contract.
	(i)	Define the term mover	nent.
			[2]
	(ii)	State the name of the	cell adapted for:
		antibody production	
		movement of mucus	
		photosynthesis.	
			[3]

[Total: 9]

		25	
11	(a)	Element X is found in Group II of the Periodic Table.	
		State the formula of the ion formed by element X .	
		Tick (✓) one box.	
		X ²⁻	
		X 6-	
		X ²⁺	
		X ⁶⁺	
			[1]
	(b)	Determine the formula of the compound formed by NH ₄ ⁺ and CO ₃ ²⁻ ions.	
		formula =	[1]
	(c)	The number of subatomic particles in an ion is different from the number in a neutral atom	

(c) The number of subatomic particles in an ion is different from the number in a neutral atom

Table 11.1 shows information about two different **ions**.

Complete Table 11.1.

Table 11.1

ion	proton (atomic) number	nucleon (mass) number	protons	neutrons	electrons
Al ³⁺	13	27	13		10
F-	9	19	9	10	

[2]

(d) Carbon has the electronic structure 2.4.

Oxygen has the electronic structure 2.6.

Carbon reacts with oxygen to make carbon dioxide, CO_2 .

Complete the dot-and-cross diagram in Fig. 11.1 to show the bonding in carbon dioxide.

Only show the outer-shell electrons.

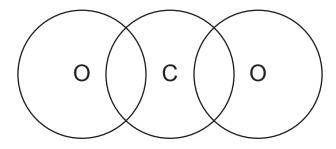


Fig. 11.1

[2]

(e) Carbon exists in several different forms.

Graphite and diamond are two of these forms.

Fig. 11.2 shows the structures of graphite and diamond.

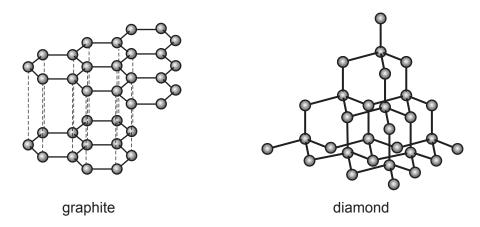


Fig. 11.2

(i)	Explain why the structure of graphite makes it suitable for use as a lubricant.
	[2]
(ii)	Explain why the structure of diamond makes it suitable for use in cutting tools.
	[2]
	[Total: 10]

12	X-ra	ays a	re part of the electromagnetic spectrum.
	Hos	spital	s use X-rays for medical imaging.
	(a)	(i)	State the speed of X-rays.
			m/s [1]
		(ii)	An X-ray machine in a hospital uses X-rays with a wavelength of $2.0 \times 10^{-11} \text{m}$.
			Calculate the frequency of these X-rays.
			frequency = Hz [2]
	(b)	Hos	spitals also use ultrasound waves for medical imaging.
		(i)	Ultrasound waves are high frequency sound waves which are longitudinal.
			X-rays are transverse waves.
			Complete the sentences to describe the nature of longitudinal and transverse waves.
			Longitudinal waves are produced by vibrations that are
			to the direction of energy transfer.
			Transverse waves are produced by vibrations that are
			to the direction of energy transfer.
			[1]
		(ii)	During an ultrasound scan, ultrasound waves travel through gaseous air, solid bone and liquid blood.
			Sound waves, including ultrasound waves, travel at different speeds in gases, solids and liquids.
			Place the speed of sound in a gas, a solid and a liquid in order from fastest to slowest.
			fastest
			slowest[1]

(c)	Hospitals use radioactive tracers such as technetium-99	(99 ₇ Tc) for medical	imaging
•	-,		(43	,	

(i) $^{99}_{43}$ Tc has a half-life of 6 hours.

Calculate the percentage of $^{99}_{43}\mathrm{Tc}$ remaining in a sample after 24 hours.

percentage remaining =% [2]

(ii) $^{99}_{43}$ Tc is produced in hospitals from molybdenum-99 ($^{99}_{42}$ Mo).

Use the correct nuclide notation to complete the decay equation for molybdenum-99.

$$^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc} +$$
 [1]

[Total: 8]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

=	2 :	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson
=																					
5																					E
>	_			7	z	nitrogen 14	15	۵	hosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	:Ē	bismuth 209	115		_
2																					
=				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium g	49	In	indium 115	81	1L	thallium 204	113	R	nihonium —
										30	Zu	zinc 65	48	В	cadmium 112	80	£	mercury 201	112	ت ت	opernicium
																					r.
	- :	I	hydrogen 1							56	Ьe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					<u></u>					24	ပ်	chromium 52	42	Mo	nolybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
			Key	mic number	ic symbo	name re atomic mass															
				atc	aton	relativ				22				Zr	zirconium 91	72	士	hafnium 178	104	<u></u>	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium —
_				3	:-	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium -
	IIA IA AI			1 III IV V VII VIII Hydrogen 1 1 1 V V VII VIII	III IV V VI VII	II	II	III IV V VII VIII VIII	III	III	II	II	II	II	III IV V VI VII VI	11 17 17 17 17 17 17 17	1 1 1 1 1 1 1 1 1 1	11 11 12 14 14 14 14 14	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Harmonian Harm

				_	
71 Lu	lutetium 175	103	۲	lawrencium	1
⁶ Y	ytterbium 173	102	8	nobelium	1
69 Tm	thulium 169	101	Md	mendelevium	I
88 Fr	erbium 167	100	Fm	ferminm	_
67 H	holmium 165	66	Es	einsteinium	ı
% Dv	dysprosium 163	86	ŭ	californium	I
e5 Tb	terbium 159	97	Ř	berkelium	ı
Gd Gd	gadolinium 157	96	CB	cunium	ı
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	I
Pm	promethium -	93	ď	neptunium	I
99 09	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ъа	protactinium	231
S8 Ce					
57 La	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).